A spiking neuron model: applications and learning

نویسندگان

  • Chris Christodoulou
  • Guido Bugmann
  • Trevor G. Clarkson
چکیده

This paper presents a biologically inspired, hardware-realisable spiking neuron model, which we call the Temporal Noisy-Leaky Integrator (TNLI). The dynamic applications of the model as well as its applications in Computational Neuroscience are demonstrated and a learning algorithm based on postsynaptic delays is proposed. The TNLI incorporates temporal dynamics at the neuron level by modelling both the temporal summation of dendritic postsynaptic currents which have controlled delay and duration and the decay of the somatic potential due to its membrane leak. Moreover, the TNLI models the stochastic neurotransmitter release by real neuron synapses (with probabilistic RAMs at each input) and the firing times including the refractory period and action potential repolarisation. The temporal features of the TNLI make it suitable for use in dynamic time-dependent tasks like its application as a motion and velocity detector system presented in this paper. This is done by modelling the experimental velocity selectivity curve of the motion sensitive H1 neuron of the visual system of the fly. This application of the TNLI indicates its potential applications in artificial vision systems for robots. It is also demonstrated that Hebbian-based learning can be applied in the TNLI for postsynaptic delay training based on coincidence detection, in such a way that an arbitrary temporal pattern can be detected and recognised. The paper also demonstrates that the TNLI can be used to control the firing variability through inhibition; with 80% inhibition to concurrent excitation, firing at high rates is nearly consistent with a Poisson-type firing variability observed in cortical neurons. It is also shown with the TNLI, that the gain of the neuron (slope of its transfer function) can be controlled by the balance between inhibition and excitation, the gain being a decreasing function of the proportion of inhibitory inputs. Finally, in the case of perfect balance between inhibition and excitation, i.e. where the average input current is zero, the neuron can still fire as a result of membrane potential fluctuations. The firing rate is then determined by the average input firing rate. Overall this work illustrates how a hardware-realisable neuron model can capitalise on the unique computational capabilities of biological neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Network Type Learning with Single Multiplicative Spiking Neuron

In this paper, learning algorithm for a single multiplicative spiking neuron (MSN) is proposed and tested for various applications where a multilayer perceptron (MLP) neural network is conventionally used. It is found that a single MSN is sufficient for the applications that require a number of neurons in different hidden layers of a conventional neural network. Several benchmark and real-life ...

متن کامل

Supervised learning in spiking neural networks with noise-threshold

With a similar capability of processing spikes as biological neural systems, networks of spiking neurons are expected to achieve a performance similar to that of living brains. Despite the achievement of spiking neuron based applications, most of them assume noise-free condition for learning and testing. This assumption, though fairly general, ignores the fact that noise widely exists in spikin...

متن کامل

Training spiking neural networks to associate spatio-temporal input-output spike patterns

In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the applicati...

متن کامل

Networks of spiking neurons in modeling and problem solving

In this paper we describe the networks of spiking neurons and show their applications for modeling and problem solving. We have used MacGregor’s integrate-and-fire neuron model that closely simulates a biological neuron’s behavior. First, we model the somatosensory system with Hebbian type spike-timing dependent plasticity and show the ability of the network to self-organize. Second, we apply a...

متن کامل

Training of spiking neural networks based on information theoretic costs

Spiking neural network is a type of artificial neural network in which neurons communicate between each other with spikes. Spikes are identical Boolean events characterized by the time of their arrival. A spiking neuron has internal dynamics and responds to the history of inputs as opposed to the current inputs only. Because of such properties a spiking neural network has rich intrinsic capabil...

متن کامل

Chapter 7 LEARNING MECHANISMS IN NETWORKS OF SPIKING NEURONS

In spiking neural networks, signals are transferred by action potentials. The information is encoded in the patterns of neuron activities or spikes. These features create significant differences between spiking neural networks and classical neural networks. Since spiking neural networks are based on spiking neuron models that are very close to the biological neuron model, many of the principles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 2002